

Virulence and aggressiveness of diverse *Pseudomonas syringae* pv. *aptata* strains on resistant and susceptible table beet and Swiss chard cultivars

Samuel Osabutey^a, Sarah Pethybridge^b, Irwin Goldman^c, and Carolee T. Bull^a

^aDepartment of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA

^bPlant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY

^cDepartment of Plant and Agroecosystem Sciences, University of Wisconsin- Madison, 1575 Linden Drive, Madison

Introduction

- Pseudomonas syringae pv. aptata is a genetically diverse bacterial pathogen with a broad host range, including chenopods (table beet and Swiss chard) and cucurbits (squash, watermelon, and cantaloupe).
- The pathogen causes bacterial leaf spot on table beet and Swiss chard globally, significantly reducing crop quality and yield.
- Previous studies demonstrated resistance in table beet and Swiss chard to single pathogen genotypes (Gaulke & Goldman, 2022; Sharma et al., 2024).



Figure 1. Bacterial leaf spot symptoms on table beet and Swiss chard.

A) severe coalesced lesions beet, and B) lesions on chard (Photo credit M. Nampijja).

Objective

To assess disease severity in 12 cultivars and 2 breeding lines of table beet and Swiss chard inoculated with 10 genotypes of *P. syringae* pv. *aptata* in replicated greenhouse trials.

Methods

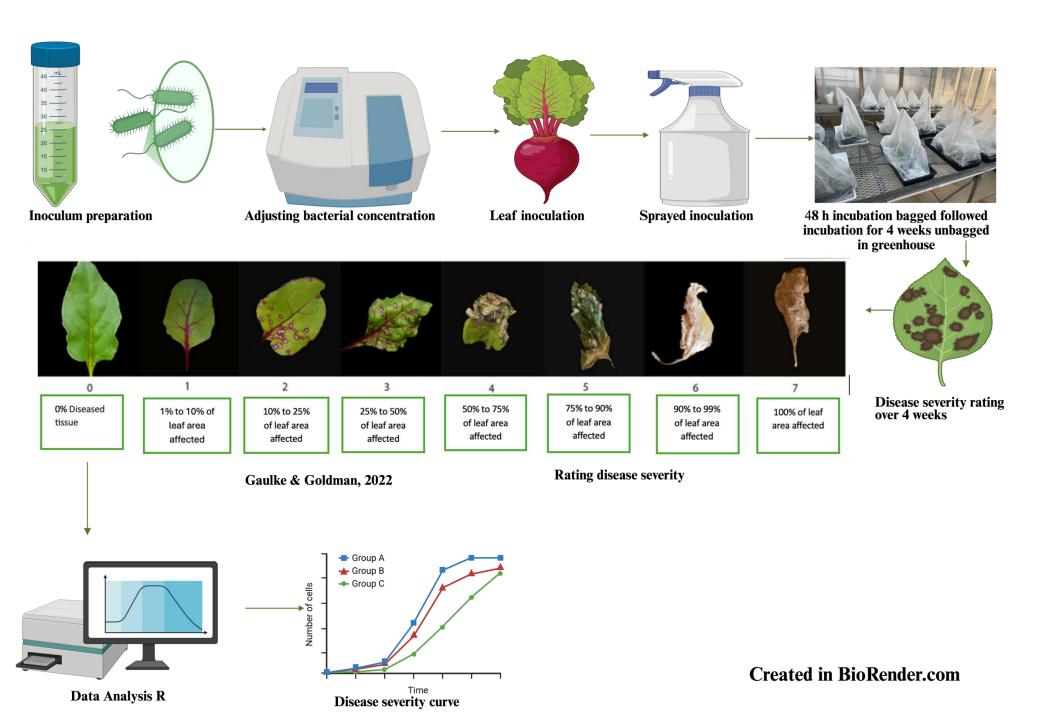


Figure 2. Greenhouse screening of beet and Swiss chard cultivars for susceptibility to *Pseudomonas syringae* genotypes. One-month-old plants were spray-inoculated with $^{\sim}1 \times 10^8$ CFU/mL of 10 *Pseudomonas syringae* pv. *aptata* strains replicated 3 times. Disease severity was assessed weekly over 4 weeks.

Table 1: Genotypes of beet and chard, levels of resistance and susceptibility, and sources.

Accession	Resistance and susceptibility ratings		Source	
W452	More resistant		UW Madison Carrot and Table Beet Laboratory	
W451	More susceptible		UW Madison Carrot and Table Beet Laboratory	
Red Ace	Susceptible		Reimer Seeds	
Detroit Dark Red	Susceptible		Fedco Seeds	
Evansville Orbit	More Resistant		UW Madison Carrot and Table Beet Laboratory	
Touchstone Gold	Resistant	Table Beet	Johnny's Selected Seeds	
Manolo	Least susceptible		Bejo Seeds	
Bazzu	Least susceptible		Bejo Seeds	
Ruby Queen	Least susceptible		Bejo Seeds	
Bresko	Least susceptible		Bejo Seeds	
Pablo	Susceptible		Reimer Seeds	
Rainbow	Resistant		Reimer Seeds	
Silverado	Susceptible	Swiss chard	West Coast Seeds	
Fordhook Giant	Resistant		Territorial Seed Company	

Table 2: Classification of *Pseudomonas syringae* pv. aptata

Gaulke & Goldman, 2022; Sharma et al., 2024

Names of strains	Sequence type	Host	Year of isolation	Place of isolation
BP1452	MLST 1	Beet	2015	Washington
BP4191	MLST 1	Beet	2019	Geneva, NY
BP1006	MLST3	Beet	2010	Western Europe
BP1999	MLST 3	Swiss chard	2015	Oregon
BP1001	MLST1	Swiss chard	2015	Washington
BP1454	Unique MLST	Beet	2015	Washington
BP1453	MLST65	Beet	2015	Washington
BP1547	Unique MLST	Beet	2015	Washington
BP1753	MLST33	Beet	2017	New Zealand
BP1806	MLST18	Swiss chard	2017	New Zealand
BP1611	MLST7	Beet	2015	New Zealand
BP1722	MLST40	Beet	2017	New Zealand

Results

Strains differed for disease severity and AUDPC on the susceptible table beet cultivar Pablo

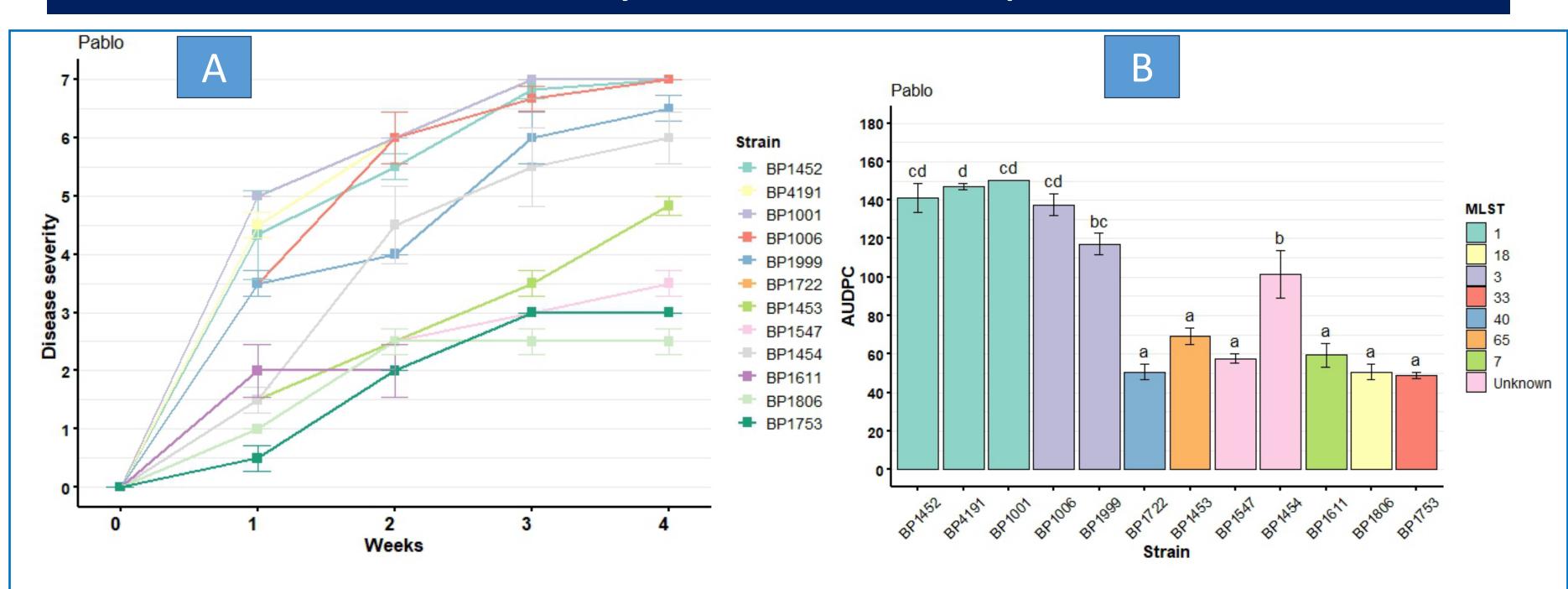


Figure 3. Effect of *Pseudomonas syringae* pv. *aptata* strains on disease severity on the susceptible table beet cultivar Pablo. (A) Disease severity, and (B) Area Under the Disease Progress Curve (AUDPC) over four weeks post-inoculation. AUDPC values with the same letter are not significantly different (P < 0.05).

Strains differed for disease severity and AUDPC on the resistant table beet genotype W452

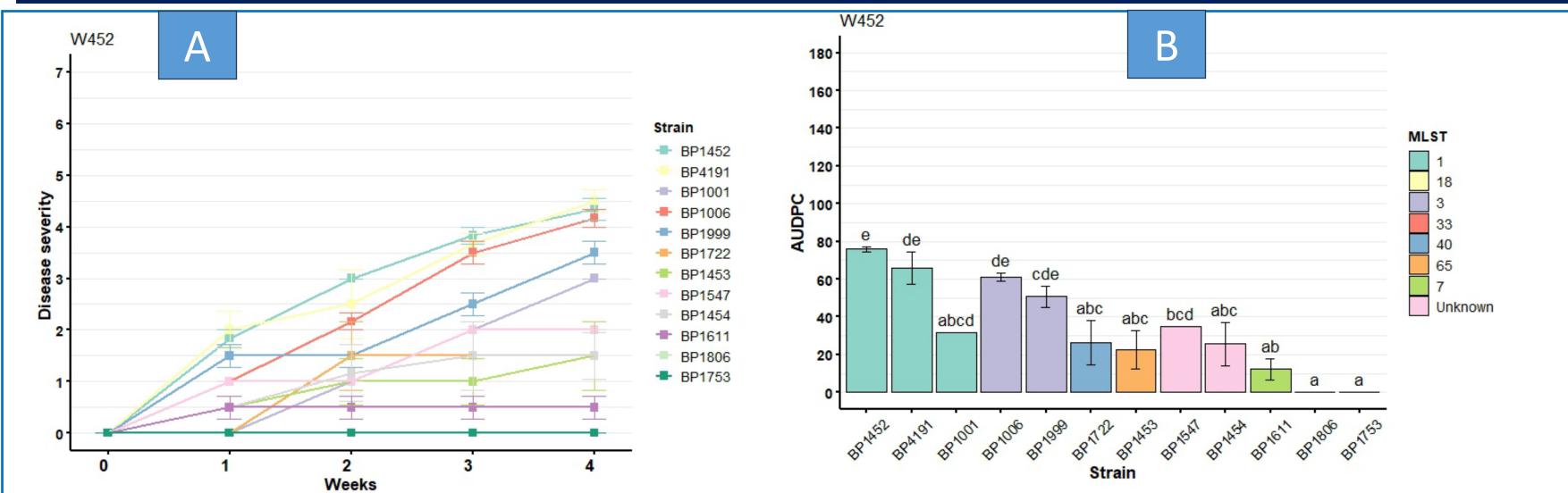


Figure 4. Effect of *Pseudomonas syringae* pv. *aptata* strains on disease severity in the resistant table beet genotype W452. (A) Disease severity, and (B) AUDPC over four weeks post-inoculation. AUDPC values with the same letter are not significantly different (*P* < 0.05).

The cluster analysis revealed distinct patterns of resistance and susceptibility among host genotypes, with isolates from MLST groups 1 & 3 consistently exhibiting higher aggressiveness in both experiments.

Citations

• Bull et al. (2025). Diversity of Pseudomonas

syringae pv. aptata causing bacterial leaf spot

Meeting 2025, American Phytopathological

beet and Swiss chard for resistance to

aptata. HortScience, 57(11), 1436-1446.

• Sharma et al. (2024). Susceptibility of Table Beet

Cultivars to Foliar Diseases in New York. Plant

Pseudomonas syringae pathovar

Health Progress, 25(4), 399-409.

Society.

isolated from global table beet and Swiss chard

seed lots [Poster presentation P-639]. APS Annual

Gaulke, E., & Goldman, I. L. (2022). Screening table

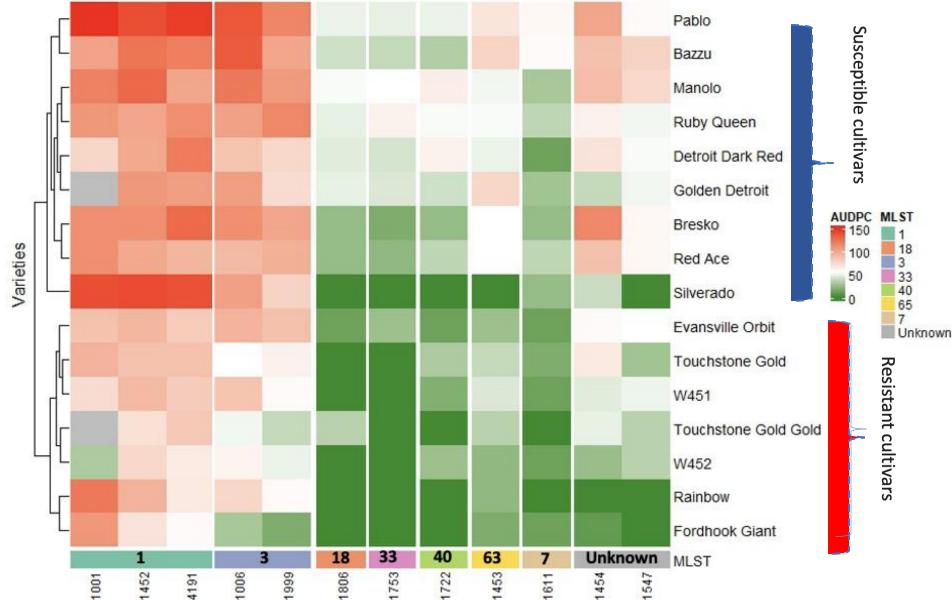


Figure 5. Heatmap summarizing disease severity at 4 weeks post inoculation in both experiments.

Discussion and Conclusions

- The study revealed substantial variation in the aggressiveness and virulence of *Pseudomonas* syringae pv. aptata strains, as reflected in differing levels of disease severity.
- MLST 1 and 3 strains were the most aggressive across all cultivars.
- Although PAP014 was previously shown to be pathogenic on beet but avirulent on chard, our results confirmed its avirulence on three chard genotypes (Fordhook Giant, Silverado, and Rainbow).
- Heatmaps from both experiments consistently showed that **MLST 1 and 3** were more aggressive on both table beet and Swiss chard genotypes than other strains tested.
- These findings underscore the variability in pathogenic potential among *Pseudomonas syringae* pv. *aptata* strains and provide valuable insights into host–pathogen interactions in the table beet–Swiss chard pathosystem.

Acknowledgements

- USDA NIFA SCRI 2019-51181-30019 and Federal Appropriations under projects PEN04926 (accession 7006350).
- Thanks to undergraduate students Makayla E.
 Schuhmacher and Joanne Hall for technical support.
- Please see P-011, P-020, P-164, and P-639 for more information about this project.